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A general theory for obtaining lattice harmonics of non-symmorphic space  
groups is presented, and the representation theory for these groups is 
briefly reviewed, with particular reference to graphite (space group 
D~h[P63/mmc]). The irreducible matrix representations, compatibilities and 
lattice harmonics for all l are listed for all symmetry points, lines and planes 
in the representation domain of the Brillouin zone. The extra degeneracies 
introduced by time reversal are also considered. An appendix gives full 
details of the angular momentum conventions used in this paper. 
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1. Introduction 

Lattice harmonics, which are linear combinations of spherical harmonics that 
transform according to the irreducible representations of the space group of a 
crystal, are generally useful for a discussion of solid-state properties. Originally 
they were introduced to simplify the wave function expansions of the cellular 
method of calculating band structures [1, 2], but they are now used routinely in 
other band structure calculations, such as the augmented plane wave [3] and 
the Korr inga-Kohn-Rostoker  methods [4]. It has been suggested recently by 
Cracknell [5] that developments in computer technology have made this use of 
lattice harmonics obsolescent but group theory is important not only for 
simplifying wave function expansions, and allowing an unambiguous labelling 
of energy bands, but also because closely spaced energy levels, if they have 
different symmetries, can be more accurately calculated than if symmetry is not 
used. In addition, in considering covalent crystals it is necessary to use 
non-spherical potentials and for all the methods mentioned above the radial 
wave equations in this case are coupled matrix functions of l and m and the use 
of lattice harmonics is, for practical purposes, mandatory [6]. Lattice harmonics 
have also been used as basis functions to obtain the rotational energy levels of 
a hindered rotator in a discussion of rotational specific heats [7], for a 
calculation of the Hall effect [8], and in obtaining the momentum density 
distribution in positron annihilation experiments [9]. Thus it is evident that 

0040-5744]80/0057/0267/$06.20 



268 C.P. Mallett 

group theory and lattice harmonics will be very useful in discussing the physical 
properties of graphite, in particular those properties related to the energy band 
structure. 

Altmann and coworkers have published tables of lattice harmonics for cubic 
groups [10] and for the hexagonal close-packed lattice [11], and this paper, 
which contains an extension of some of the work in the paper by Altmann and 
Bradley [11], gives the lattice harmonics for graphite. After a brief discussion 
of the reduction of space group representations in Sect. 2, the irreducible 
matrix representations for the graphite setting of D~h are given in Sect. 3. The 
general theory of obtaining lattice harmonics for non-symmorphic space groups 
is given in Sect. 4, as are the results for all points, lines and planes of symmetry 
in the representation domain of the Brillouin Zone. Finally, the simplifications 
introduced by time reversal symmetry are considered in Sect. 5. In order to 
make the paper as self-contained as possible, some results previously obtained 
by Altmann and Bradley [11] are included here. 

2. The Reduction of Space Group Representations 

This brief resum~ of the reduction of space group representations owes much 
to the work done by Altmann [12] and the definitions and notation adopted 
here are the same, within typographical limitations, as those used by him. 

The translation subgroup T of the space group G is made finite by using the 
Born-von K~rmfin periodic boundary conditions, where a portion of crystal is 
chosen large enough such that its extension to infinity does not make any 
difference to its physical properties, and the extension to infinity is then made 
periodically. A n  element of this space group will be denoted by the Seitz 
notation {p ]v} where p is a point operation and v is a translation vector, which 
may or may not be a vector of the Bravais lattice of the crystal. The group G 
can be expanded in terms of left cosets with respect to the invariant subgroup 
T, the group of pure translations of the Bravais lattice, as 

G = ~ {p I w}r (1) 

in which the sum is to be understood in the Galois, direct sum sense and where 
the coset representatives {p I w} contain all the point operations p of the crystal 
(the set of which forms a group P, the isogonal point group of the lattice) 
combined with some uniquely associated special vector that is either the zero 
vector or a non-primitive lattice vector. The Abelian group T has representa- 
tions given by 

kT{e It} = exp ( - i k .  t) (2) 

where k is a vector of the reciprocal lattice 

k = k lg l  + k2g2+ kag3 (3) 
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(kl ,  ka, k 3 are non-integral) and the basis vectors g~ are defined as 

2 7r(12 • t3) (4) 

g l - - t l .  ( t2 •  

with g2 and gs obtained by cyclic permutat ion of the basis vectors of the 
Bravais lattice. It is evident from Eqs. (2)-(4) that a vector k + g, where g is a 
reciprocal lattice vector with integral coefficients in (3), will have the same 
representative as that for the vector k. For this reason it is only necessary to 
consider k vectors in the first unit cell of reciprocal space, and this unit cell is 
normally taken to be a centred unit cell, the Brillouin zone, in order  to display 
the full symmetry of the crystal. The irreducible representations (IRs) of G are 
obtained from its invariant subgroup T by induction, although to obtain all the 
I R s  this process must be carried out via a third group, the little group kK, 
containing all the elements of G that transform the wave vector k into an 
equivalent one, k + g. Altmann has shown that the ith IR of G for a particular 
wave vector k is given by 

kG{P I V}[{p, I w~}{P~ I w4] = kJ[~({Pr I W~} ' {p I t,}{p~ Iw }) 
if {p, [ w,}-'{p J v}{p~ I ws}skK 

= 0 otherwise (5) 

(here representations are denoted by carets). The elements labelling the rows 
and columns of the IR of G are the generators of the star, the set of 
non-equivalent k vectors, which are the coset representatives in the expansion 
of G in left cosets of kK 

kS = {pk I P in G--  ~ {p (6) 
The representation given in Eq. (5) for G is an IR if the representation ~K is an 
IR of kK. If this process of induction, k~" ~' kK '~ G, is carried out for all 
permit ted I R s  of kK (the small representations) for all little groups ~K then the 
set of I R s  so obtained for G is complete. A representation of ~IK is permitted if 
on subduction (restriction) to T, ~I~ $ T, it gives the correct representation (2): 

~,l~{e It} = 1 exp ( - i k "  t) (7) 

i where the unit matrix 1 has the same dimension as kK. 

The IRs in (5) are uniquely determined by a single prong of the star and 
therefore only the volume of the Brillouin zone that contains one prong for 
each star need be considered. This volume, the representation domain, gener- 
ates the entire Brillouin zone when operated on by the elements of P,  the 
isogonal point group of G. 

From Eq. (5) it is evidently necessary to find the IRs of the little group ~1~, and 
this can be done by using the little factor group kl~ defined as 

kK : kK/T = ~ [{p ! w}T]. (8) 
For symmorphic space groups the vectors w in (8) are zero, and the little group 
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can be written as a semi-direct product of k/~ and T, 

a , K = T @ ~ K  (9) 

(@ denotes a semi-direct product in which the invariant group T is conven- 
tionally written first). In this case the little factor group is isomorphic to a point 
group and its IRs are readily obtained. For non-symmorphic groups, however 
the w are not zero and it is not possible to write kK in the same semi-direct 
product form because the set of coset representatives do not close to form a 
group. It is still possible to use the little factor group, but now the representa- 
tions are projective rather than vector representations. To avoid this problem, 
which is produced by mapping T in (8) on to the identity of the little factor 
group, an alternative method due to Herring [17] is usually employed in which 
a subgroup Tk of T is defined such that the elements have representatives of 
unity: 

Tk ={{e It} such that exp (- ik.  t) = 1}. (10) 

In analogy to Eq. (8) the little Herring factor group kR is defined as 

kg: = kK/rk  = ~ [{P [ v}Tk]. (11) 

Furthermore, the IRs of kK can be obtained from those of kR directly 

~g{P I v} = ~[{P  I v}T~]. (12) 

To obviate the necessity of working with cosets, a new group, the little Herring 
co-group is defined as 

~T={{p Iv} for all {ply} in (11)} (13) 

and where the usual Seitz multiplication rules apply, except that for all 
elements of T~ {e It} is taken to be the identity. Under  this rule all translations 
{e [ t} ~ T commute with all the operations {p [ v} of the little group kK. The 
structure of this new co-group can be obtained by expanding T in left cosets 
with respect to Tk 

T = ~ {e I tIT~ (14) 
(e t,} 

and substituting the result in the coset expansion of ~K with respect to T (cf. 
Eq. (8)) 

~K= ~ {plw}T (15) 
{p [ ,~} 

-= Y. Y, {p I w}{e I'}T~ (16) 
{P I w} (e It} 

and so, comparing Eqs. (11) and (16) 

V{p I,~} in (15) 
~--- ~ ~ {plwI{e It} (17) 

{ol,~l{*l,} V{e It} in (14) 



Lattice Harmonics for Graphite 271 

where the fact that the coset representatives in (14) form a group % has been 
used implicitly. The set of {p I w} in (17) (henceforth denoted as @k) is not in 
general a group, but if the w are so chosen that, if possible, the coset 
representatives do close, then the set product 

kr = "r~" ~k (18) 

will have one of the following forms: 

A) the set ~k form a group, the elements of which, under the Herring 
multiplication rules mentioned above, commute with those of % and so k~ 
is a direct product: 

k~=%(~@k (19) 

where ~ is the direct product symbol. 
B) It is possible to choose the w's in (17) so that the product of two 

elements of @t never belongs to T~ but there are products of the form 

{p~ I WrI{P~ I W,}={p Iw+t}. (20) 

Closure can then be obtained by replacing {plw} in (17) by {p Iw+t} and 
obtaining a new set ~ ,  which gives, in analogy to A above 

k~ = %@@I,. (21) 

C) Finally it may not be possible to form a group from the {PlW} and the 
set product given in Eq. (18) is the simplest form for the little Herring 
co-group. 

In cases A and B the groups @~ and @I, are isomorphic to a point group and so 
their representations are readily found. For case A the class structure of @k will 
be the same as that for the point group to which it is isomorphic, but for cases 
B and C this will not be so. 

3. The Graphite Lattice 

The normal structure of the graphite lattice is shown in Fig. 1, and consists of 
parallel sheets of interlinked hexagons with a carbon-carbon bond length of 
1.42 ~ and an interlayer separation of 3.34 ,s The sheets are oriented with 
respect to each other, the atoms of one sheet being translated by half a 
hexagon diagonal with respect to the sheets above and below. Consequently 
there are two sets of atoms (see Fig. 1 ) -  A type atoms, which have neighbours 
directly above and below them in adjacent sheets, and B type atoms which 
have neighbours above and below at every other sheet. There has been some 
controversy about the structure of graphite [19, 20], particularly over whether 
the atoms in a particular sheet are coplanar and whether all the intralayer 
carbon-carbon bonds are equivalent. Recent evidence, both from neutron 
diffraction [21] and electron diffraction [22], suggests the structure described 
above is the correct one. The space group symmetry is D~h(P63/mmc), the 
same as that of the hexagonal close-packed l a t t i ce - in  fact graphite can be 
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Fig. 1. The 
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graphite lattice (after 

c o n s i d e r e d  to be  m a d e  up  of two i n t e r p e n e t r a t i n g  h.c.p,  la t t ices,  each  having  an 
a t o m  of  type  A and  B as bases  and a la t t ice  cons tan t  of  a and  r e l a t e d  by  a 

2 n o n - B r a v a i s  la t t ice  vec to r  ( -3  ~ t l - 3  t2). T h e  la t t ice  d imens ions  of g raph i t e  a re  

[203 

a = 2.461 A + 0 . 0 0 2  

c = 6 .709 A + 0 . 0 0 1  (22) 

c 
- = 2.725 + 0 .005 
a 

( O ' d O  

O'V2 I O-V3 
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Fig. 2. The  direct lattice with basis vectors t 1 and t 2 : t  a is perpendicular  to the plane of the  
drawing. The  setting of the  operat ions for the axis sys tem is also given. Those  operat ions with 
brackets around them are not  by themselves symmetry  operat ions of the  lattice and are associated 
with the  non-primit ive translation vector f 
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and the Bravais lattice primitive vectors are 

tl  = (0,  - a ,  0) 

tz = 1(a~/3, a, O) (23) 

t3 = (0,  0,  c).  

The unit cell contains four atoms, two of type A and two of type B, and is 
shown in Figs. 1 and 2. The centre of symmetry operations is a tom 1 and Fig. 2 
shows the symmetry  operat ions and their setting. The  solid circles in Fig. 2 
refer  to carbon atoms in one plane and the open ones to atoms above and 
below this plane. Symmetry  operat ions enclosed in brackets  are associated with 
a non-Bravais  lattice translation vector (0, 0, �89 The  isogonal point  group of 
the lattice, D6~ , can be written as D31~@C i where  G = { E  10}(~{I[0}. For  
graphite the operat ions of D3g are space group operations {Pl0} but the 
operat ion {I I 0} is replaced by {11 f} where f = �89 The  space group G is then 
the product  of this set with the translation subgroup T. The  reciprocal lattice 
has the basis vectors 

0) g l = - ~  - \ , /3  , - 1 ,  

* 2 = T  ~ , 

and the Brillouin zone (BZ) constructed f rom these vectors is shown in Fig. 3, 
together with the orientation of the B Z  with respect to the direct space lattice. 
The  symmetry  points and symmetry  lines are labelled using the conventional 
notation [14]. 

k z 

T 
j A 

ky i~ b,- k x 

Fig. 3. (a) The Brillouin zone for hexagonal space groups (after Ref. [14]) with the conventional 
labelling for points and lines of symmetry. (b) The orientation of the reciprocal lattice with respect 
to the direct lattice. The vector g3 is perpendicular to the plane of the drawing. The scale is 
arbitrary 
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In order to obtain the IRs of the Dab space group it is necessary to carry out 
the procedure outlined in Sect. 2. However the D~h space group for the 
hexagonal close-packed lattice has already been reduced [11, 12, 14] and 
because the two space groups are isomorphic only a very brief example will be 
given here. 

Consider the point K, with coordinates in reciprocal space of (-�89 +2g2). The 
star has two prongs K and K'  (shown in Fig. 3(b)) and the coset representatives 
labelling the small representations in Eq. (5) are thus {El0} and { / I f } - t h e  
rotational parts of these operators generate the star of K. The operations {p ]w} 
in (17) that constitute the non-translational part of the little Herring co-group 
are 

{E I = I I = I o e{ di I I  {c2, 
i - - 1 , 2 , 3 .  (25) 

A vector of the Bravais lattice t = rntl 4- ritz + pt3 will be in TK if 

exp ( - i k "  t) = 1 i.e. 2try = 2rr(- lm +2n)[v integral]. 

Thus, 

t ~ T ~  if 2 n - m = 3 v  
(26) 

~xK if 2 n - m  = 3 v + l  or 3v+2.  

For t with 2n - m = 3v+ 1, the translation has the form 

{E [ (2n - 3 v -  1)tl + nt2 + Pt3} = {E [ (2n - 3(v + 1))t~ + nt2 + nt3}{E ] 2tl} 
(27) 

where the first translation in (27) is, by (26), a member of TK and the second a 
member of "rK. For translations such that 2 n - m  = 3 v + 2  the result is {E It1} 
and so 

'rK = {E I 0 } ~ { E  [ t l } ~ { E  1 2t~}. (28) 

It is evident that the elements of the set ~ in (25) close to form a group and 
thus cff  is of the first type in the Herring classification 

K~ = "rK | 8K- (29) 

Since the group ~K is isomorphic to D3h its representations are readily 
obtained, a'K, an Abelian group of order 3, has 3 IRs  with characters given by 
the 3 roots of unity, but only one of them is, from Eq. (7), permitted. The 
characters for the permitted representation are 1 for {El0  }, exp (-27r//3) for 
{E II1} and exp (-4rri/3) for {E I 2tl}. 

The structure of the little Herring co-group for the point K for the graphite 
lattice is different from that obtained for the hexagonal close packed lattice 
(where ~:~ has type B structure) because of the different form of the vector f 
associated with the glides and screw axes. A similar change in structure occurs 
for the representations of the line P, and the form of the operations for H 
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change. These three differences, apart from the change in the form of the 
non-primitive lattice vector from -~tl-2t2+~t3 to �89 are the main changes 
between the IRs of D4h for graphite and hexagonally close-packed materials. 
For completeness the IRs are given for all points and symmetry lines [see Ref. 
11] in Table 2, which should be used in conjunction with Table 1 which gives 
the star generators, the structure of the little Herring co-group and the 
elements of ,r~ for all points in the BZ. Because of the importance of Fermi 
surface studies in the neighbourhood of the K-P-H line, the five planes of 
symmetry have been included in the Tables in addition to the symmetry points 
and lines considered by Altmann and Bradley [11]. Table 3 gives the matrix 
representatives for the multi-dimensional IRs which are required for the 
projection operators (see Sect. 4) and Table 4 gives the compatibility relation- 
ships for all points, lines and planes of symmetry in the BZ. These relationships 
are obtained by subducing the IR of a supergroup (for instance at a symmetry 
point) onto its subgroup (for instance at a symmetry line) and decomposing the 
resulting representation into IRs of the subgroup. Character tables for the 
symmetry points only have been given by Bassani and Pastori Parravicini [23] 
who have also considered the double groups for the symmetry points which are 
required for relativistic work. 

4. The Lattice Harmonics 

A cellular expansion of a function, such as an electronic wave function, can be 
obtained by dividing the crystal lattice into centred unit cells, the Wigner-Seitz 
cells, and making a spherical harmonic expansion in each cell. For graphite the 
Wigner-Seitz cell comprises four subcells, each determined by one of the four 
basis atoms. There are two kinds of subcell (Fig. 4(a)), one for atoms of type A 
and one for atoms of type B, with the same sides but different ends because 
type A atoms have neighbours directly above and below them whereas type B 
atoms do not. The subcells for atoms 1 and 2 (type A atoms) have 3 octagonal 
faces, 2 hexagonal faces and 6 triangular faces; the subcells for atoms 1 and 2 
have six diamond faces in place of the hexagonal faces. The four subcells fit 
together to give an irregular 52 faced polyhedron with 5 interfaces (Fig. 4(b)). 

The cellular expansion in the central field approximation for a Bloch function 
qt,(r) has the form 

Vl,(r) = ~ 1Cl,,,,Rt(rl) Y~(~1)8(rl, r) + ~ 2Cz,~Rz(F2) Y~(~2)8(~2, r) 
Im lra 

+ ~ 3C~,,,Rt(rs) Y'~(~s)8(r3, r)+ ~ 4C,~Rz(~4) Y'~(~4)8(~4, r) (30) 
lm Ira 

where the ~Ct,, are the cellular coefficients, which are k dependent, but whose k 
dependence will be left implicit, the Rt(r~) are radial functions and 8(r,, r) is 
one if r is in cell i but zero otherwise. The bar over the coordinates for cells 2 
and 4 indicates that the axes for cells 2 and 4 are inverted with respect to those 
for 1 and 3 and the reasons for this procedure will be explained shortly. 
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Explanatory Notes for Table 1 

(i) The first column gives the symmetry point, line or plane and the second its coordinates (relative 
to gl, g2 and g3)- 0 < a <�89 0 </3, 3' <�89 The points and lines can be identified from Fig. 3 -  the 
planes are 

V 1 bounded by F - ~ - M - T ' - K -  T - F  
V 2 bounded by A - R - L - S ' - H - S - A  
V 3 bounded by F - E - M - U - L - R - A - A - F  
V 4 bounded by M - T' - K - P - H -  S' - L - U - M 
V 5 bounded by F - T -  K - /~  - H - S - A - A - I .  

(ii) The coset representatives, which label the rows and columns of the IRs (Eq. (5)) and whose 
rotational parts generate the stars, are given in column 3. The star order is given in column 4. 

(iii) The groups ~1, of translations not represented by unity are given in column 5. For symmetry 
lines and planes there is a restriction that, e.g. for E nc~ ~ v; this means that n can take any value 
except one that, for a particular value of a, gives an integral result. Other, similar, restrictions hold 
for other k points. As was shown for K, it is often possible to reduce the restriction on two 
translations to one involving one o n l y -  e.g. T and S give a restriction on t 1 alone, whereas T' and 
S' have a restriction on t2 only. 

(iv) The group operation sum ~',, =~ {plw} is given in column 6 and the structure of the little 
Herring co-group (see Sect. 2) in column 7. Only those little co-groups with structure type A have 
fl~ forming a g r o u p -  those of type C have ~l, that do not close. There are no groups with type B 
structure. 

(v) J={E I o}e(I  I 1}; c3 = ( E  I o}e(c ;  I o}e(c  I o}; D3 ={E[O}~{C~]O}~{C2~ ]0} (i = 1, 2, 3). 

The groups D3h , C~v , C3h c a l l  be identified from the character tables, Table 2. 

If the projection operator 

W't~ o: ~ ~K({p [v})*{p Iv} (31) 
(p I-} 

E k K  

is applied to the generator ~Ir k given in (30) then it will produce a function 
symmetry adapted to the t th column of the /th small representation. From Eq. 
(16) the expansion (31) can be simplified: 

W*t~ • ~ ~ ~c~({plwI)*~({e I tI)*{p [w}{e [t+t'} (32) 
(p I w} (~ It} {~ I *'} 

C @ E 

~k "t~ Tk 

where {ply} in (31) has been written as (Pl w}{e I t {e [ in which (p I 
{e ] t}c'~k and {e ] f } c  Tk and Eqs. (7), (10), (12) and (13) have been used. In 
order to obtain the lattice harmonics from (32) and (30) it is necessary to 
calculate the effect of the symmetry operators, centred at atom 1, on the 
cellular expansions. For translations 

{e I t}Y7(f,) --'YT(~,) i = 1, 2, 3, 4 (33) 

where 'YT(~,) is identical to Y~'(~,) but centred about an origin translated by t. 
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Explanatory Notes for Table 2 

(i) This table should be read in conjunction with Table 1. The subscript i takes the values 1, 2 and 
3 and thus ~ra~ is shorthand for era1 , O'd2 , era3. 

(ii) The groups listed below are the full little Herring co-groups, kqr which have as a subgroup 'r~, 
the elements of which are given in Table 1, as is the type of group product. Only permitted 
representations are listed. 

(iii) The operations are to be identified from the first column of the tables. The operations 
involving t 3 are only to be included for points marked with a dagger (t) when two operations are 
given (i.e. are in the same class). For most groups the names of two representations appear, one 
above the other, and the upper sign is used for the upper of the two representations and the lower 
sigri with the lower of the listed representations, e.g. for K the character of {~aitf} for 
representation A~ is - i  and for A~ it is +1. 

(iv) The nomenclature is that of Altmann and Bradley [11]. An alternative notation due to Herring 
[17] is listed at the foot of the tables, as is one due to Bassani and Pastori Parravicini [23]. 

(v) The characters of the elements of ~k for permitted representations are also given in the table. 
In order to find the character of a general operation in ~/r it is written (cf. Eq. (16)) as a product 
of three operations {p I w}(e I t}{e It'} where {p [w} is a member  of fl~, {e It} of ~ and {e ]t'} of T k. 
Since the character of {e I t'} is unity, the character of the operation is obtained by multiplying the 
characters of {plwt and {e It} obtained from the table. For symmetry lines and planes the 
conditions for a translation to be in x k should be carefully noted; for fractional, rather than 
irrational values of a and/3 in Table 1, a translation may be in Tk, if the representative becomes 
unity. 

(vi) Time reversal symmetry (see Sect. 5) introduces extra degeneracies for R and V 2. 

(vii) The following abbreviations have been used: 

~o = exp (-21ri/3) 

~o* = exp (2~ri/3) 

v = exp ( - i k .  t3/2). 

The operations {plw} in (32) are such that operat ions with w = 0  (i.e. in D3h ) 
either leave Y["(ri) centred at atom i or m o v e  it to another centre related by a 
Bravais lattice vector to the original centre. H o w e v e r  the operat ions with w = f ,  
which are a product of { I l l  } with an operation from D3h , m o v e  YT'(rl) to 
Y?(f2) and m o v e  Y7'(~2) to a centre at atom 1 or one  directly above  or be low 
it. Similarly, Yff(t3) is m o v e d  to a centre related to atom 4 by a Bravais lattice 
vector and conversely  for Y~n(~4). Since 

Ym(~2) = {I1 f}Yff(rl) (34) 

Ym(~'4) = {I] f}Y?(P3) 

the coordinate  axes at centres 2 and 4 are inverted with respect to those at 
centres 1 and 3 to avoid the factor of  ( - 1 )  z that would  otherwise occur because  
of the transformation properties of  the spherical harmonics  under inversion. In 
addition. 

V?ff3) = {e ] "t}V?(~l) (35) 
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F K A L H h P S S '  

E "  E L  E~ E "  E '  E "  A ?  ) A ~  2) E (4) E1 e2 A (2) E E *  Ep E ~  E e e 

13 e e ~3' e to* to* /3 /3 /3 

A k An k )~ 

A )~ IX" 
A ~ V" 
A A e"  A A A A 2~ A A 

/3 X )t /3" A Ato* ~ *  
& A k a "  A Ato Ato 

e A' e g )t A 

e p~' IX /x 
V t p P 

it5 tp ~ e '  i/5 ip 

i~ ,0 n/3' 
il5 tp ~ a '  

k iK tK riA" ir i~ itc i~, i~, vA v~. v k  iK 
Ix ir tK rig" i~ iffto * iffto* Vl z vb2 v/x iK 
v i~ tr rip" itr iffto i~to vv v~ vv  

it( i~. ~le" it~ iff ve vg: 
i~ i~ rir v(3 v[3 
i~ iY, ria " va  v6~ 

I~ tp i~ riIx' i~ ipto * i,~to * i~ 

f, i~ i~ riv' ig ioo~ i~to 

E ~ E E E 

c~ /3 t3 t3 /3 /3 
C ;  a a ~ ~ a 
C'2 z A )t )~ )t 

C~2 Ix IX ~ F~ 
C'2~ v v f~ 
o'k e e g ~ e 

s~ ~ ~ ~ ~ 
S ~ a a 6~ 6L ec 

002 ~ ~ bL ~,L 

try 3 P V P 1) 

I e g e # 

tra 1 A A ,k A ~t 

era2 ~ 12 /2 p. IX 
O'd3 I/ V ~ V V 

C2 e ~ ~ e 
c~ ~ ~ ~ t3 

C~ ;t ~ X h )t 
C~2 tx /2 t~ /2 IX 
C~ v ~ u ~ v 

:?) 
:.) :) :) 

to = exp  (2wi/3) ,  v = exp ( - i k ,  t3/2). 

E x p l a n a t o r y  N o t e s  for  T a b l e  3 

(i) The matrix representations listed here are a corrected version of those used by Altmann and 
Bradley [11]. The notes for the two previous tables are also relevant here. 

(ii) The table contains both (2 • 2) matrices (denoted by Greek letters) and also (4 • 4) matrices 
(denoted by Greek letters with a prime or double prime) which are supermatrices of (2•  
matrices. 

(iii) To find a matrix representative for a general operation, write it (cf. note (v) to Table 2) as 
{P I w}{  e I t }{  e It'} where {p I w} is a member  of @k, {e It} of "t k and {e I"} of T k. T h e  matrix for this 
operation is obtained by choosing the matrix corresponding to p in the table and multiplying it by 
the matrix representative of {e I t} in Ck obtained from Table 2. 

-:(:i 7) 

w h e r e  r is a n o n - p r i m i t i v e  l a t t i c e  v e c t o r  

r  2 I -~t2+~t3. ( 3 6 )  

I t  is a l s o  n e c e s s a r y  t o  o b t a i n  t h e  e f f e c t  o f  t h e  r o t a t i o n a l  o p e r a t o r  p o f  {p I w} o n  



Table 4. Compatibilities for the irredicible representations of D~h 

Symmetry 
line 

p f ip t, , t  F Al:e, E .  A'~• E "  AI•  , E .  A~:~, E• 

M ~t~: ~ :  od E ~'.' 

M .-~'+, ~ L  M'_, ~ _  .~_', ~ . ~ ,  ~'_' 
T'  sr 9~' ~t" ~ "  
K APl, E ' ' . . . . .  A2,  E A1, E A2, . . . .  E 

K A~, E '  A~, E '  A~, E" A~, E" 
T stt' I~' sat" ~"  

' ' ' A '  A '  ~ '  A "  A . . . . . . . . .  F A 1+, A2- ,  E~ ~-, 2+, ~ •  1-, 2+, E• AI+, A2_ , E• 

' " A t  , A ~ +  A'~+,  A . . . .  F A~+, A 2_ _ 1- A~_, AI+ 
A A 1 Alto A2p A~,.  
A A i  ~) A (2) A (2) A (2) 

A A~ 2), E O) A(2 2), E (4) A (2) , E (4) A~ 2), E (4) 
R ~t '  ~ '  ~ "  ~ "  

L e I E 2 E 2 E 1 

L e I s x e 2 E 2 

' " s~ '  " ~ L ,  + M M+, ~ _  _, ~+ ~3~_, ~ "  sg" 

K A~, A~ A-5, A ;  E ' ,  E" 
P Ap A m E 
H A (2) A (2) E, E * 

E~_, EL' EL, E~ 
Ep E~ 
E(a) E (4) 

Symmetry Symmetry 
plane plane 

Z s r  sg" ,~"  R 
V 1 A '  A"  V 2 
T ~ ' , ~ '  ~",NI" S 
V~ A ' A"  V 2 
T'  s r  ~ " , ~ "  S' 

Z sg ' , ~"  s r  T'  
v~ ~ ~ v ,  
U ,~p, A m ~p, if8 m U 
v~ ~ ~ v4 
R ~t',~" ~",~'  S' 
V 3 ~ ~ V 4 

A Alp  , Alra, Up, Eta A2p , A2m , Ep, E m P 

T sO', ~"  sg", ~ '  
V 5 Av Ara 
P Ap, E Ara, E 
V s Ap A m 
S e e 
V 5 Ap A , .  
A Alp,  Azm, E w E,.  A lp  , A2m, Ep, Era 

~ ' , N '  ~t", N" 
A '  A"  
8 E 

A '  A"  

M', ~ "  .d", ~ '  

Ap Ar. 

Ap A , .  
E E 

Ap A m 
Ap, E A, . ,  E 

Explanatory Note for Table 4 

(i) The table lists, under one column, all the compatible IRs  for each of the seven symmetry lines 
and five symmetry planes in the BZ. When more than one sign subscript appears in a particular 
column, either can be used. Along the lines A S H  and L S ' H  all the representations are compatible. 
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Fig. 4. (a) The Wigner-Seitz subcells for 
atoms type A and B in graphite. (b) The full 
Wigner-Seitz cell with its four subcells 

the spherical harmonics, and this can be done using the properties of the 
3-dimensional rotation group and parametrising p into Euler angles. The 
detailed procedure for doing this, and an explanation of the conventions used, 
are given in the Appendix. 

The effect of the operator (32) on the generator (30) will be to produce a 
multicentre expansion (a lattice harmonic) consisting of linear combinations of 
spherical harmonics at different lattice sites. However it is sufficient to treat 
only the four atoms of the basis because the expansions for other centres can 
be obtained by Bloch periodicity from that for the basis. Thus it is only 
necessary to consider the terms in (32) that interchange the atoms of the basis, 
though it must be emphasized that these operations are in general a product of 
a point operation and a translation. Consider, as an example, the effect of 

r n  ~"  {o'h 10} on Yl (/'2), which moves it from a centre directly above atom 1 to a 
centre directly below it; that is to a new centre t3 below the centre at atom 2. 
If, however, the operation {e I -t3} is first applied to Y~(g2) followed by {oh 10} 
then the net result is to leave the spherical harmonic centred on atom 2. Thus 
the operational procedure is as follows: write the effect of the operations in 
(32) on a spherical harmonic as 

(p I wI{e I tIY~(~i)={p [ wI{e I tI{r I uIY?(rl)  (37) 

where {r I u} is one of the operations in (34) or (35) and {e It} is a translation of 
the lattice (which may be in "r or T~). Because the symmetry operations {p I w} 
centred at atom 1 move the cellular expansion at atoms 2, 3 and 4 from these 
centres into different Wigner-Seitz cells it is necessary to choose {e It} so that 



2 8 4  C . P .  Ma l l e t t  

this effect is cancelled. There are two cases to consider: 

(i) {p [ w} e D3h, W = 0 

{P I 0}{e I t}{r I u} Y?(O,) = {pr ] pt + pu} Y?(e,) (38) 

= {r lp t  + pu}{plO}Y?(i,) (39) 

= {r I pt + pu} Y, Yr(~0~'(p).., (4o) 
1,1 

= { e l p t + p u -  u}{r I ,,} Y. Yr(~I)~(P), , ,  (41) 
r~ 

= {e I Pr pu - u} Y. Yr(~,)~'(p). , .  (42) 
n 

where ~Z(p),,, is a matrix element of the representative of p for the rotation 
group (see the Appendix). For the translation in (42) to be zero, and for the 
combined operation {p l aI{e Id to leave Y?(rl) at centre i then 

t = p - i n -  u (43) 

(ii) {p I w} e D 3 h "  {I I l} ,  w = [ 

{p I w} = {II l}{q I 0} (Iq = p) 

{p ]w}{e ],}Y?(~,) = {Ill}{q ]0}{e ]t}{r ] u}Y?(rl) 

= { Iqr l f - q t -  qu} Y?(  f O 

={e 
={e 

={e 

- q , -  q.. + .}{I I l}{r I "}{q I O}YF(rl) 

- q l -  qu + u}{I I f}{r [ u} Y, Y~"(~l)~t(q).m 
n 

- q t - q u  + u} ~ ({I l l} Y';(~,) )~'(q),,,. 
rt 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

and so for Y?(ri) to go into a centre related to one at atom i by {I[ /} ,  then 

t = q - l u  - u. (50) 
Evidently t can be different for each operation {p I w} in (32), though in practice 
several operations have the same translation vector. The representatives of 
{p [w} required in (32) are given in Tables 2 and 3 (see especially footnote (iii) 
to Table 3). 

As an example of this procedure, consider the result for the representation A~ 
of K. The method outlined above gives the result 

! t ?t 

q_ 2 - - m  '~ altk(r)= 1CI~R,(rl)YF(~'O ~ C,_,,.Rt(r2)Y, (r2)+ ~3C,,.Rt(r3)Y'~(P3) 
lra l m  I m  

ft 
_if_ 4 - - - r n  

2 C l - m R l ( r 4 ) Y t  ( r 4 )  
l m  

- ( -1 ) "  1G.,R,(~2)Yr"G)+ Y. 2G-"R, ( r0YrG)  
t l m  l m  

. . . .  )} "k 4 " ^ + ~3GmR~(h)YTm(~4) Y. G-~R~(r3)Y, (r3 �9 (51) 
l m  l m  
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The delta functions have been dropped for convenience: the single prime 
denotes summation over those values of 1 and m such that l is odd, m = 0 
(modulo 6) and l even, m = 3 (modulo 6) whereas the double prime indicates 
that the summation is over I and m values of l even, m = 5 (modulo 6) and I 
odd, m = 2 (modulo 6). The first four terms in (51) come from the effect of 
operations in D3h and the second from operations of the form (44). The 
expression in (51) simplifies to give 

p 

1B,,~R,(rl){Y'~(fl)- yTm(g2)(- 1) m } 
lrn 

rr 

+ Y 3B,,~R,(r3){ Y?ff ,)  - Y?"ff, O(- 1) m } (52) 
lm 

where 

1Ulm (rl) =1  Clrn (q)  __ 2 C,_m (F2) ( -  1) ~ 

and 

3B~ m (r3) ~_ 3 Gm (/*3) - 4Cl-rrt (~4)(- 1) ~ (53) 

and 

R, (q)  = R,(?2); Rt(r3) = Rl(r4). (54) 

This work has been carried out for all the small representations for all 
symmetry points, lines and planes in the representation domain of the BZ. 
The results, which are given in Table 5, have been checked using the empty 
lattice test version of the cellular method for band structure calculations. This 
test provides a necessary and sufficient condition for the correctness not only of 
the numerical analysis and programming of the method but also of the lattice 
harmonics [2]. The importance of the lattice harmonics is evident from the 
form of (52 ) -  in, for instance, a band structure calculation, it is only necessary 
to solve for two different sets of coefficients for certain restricted values of l 
and rn, instead of solving for four different coefficients for all values of l and m, 
as in Eq. (30). 

5. Time Reversal 

The symmetry operation of time reversal can introduce extra degeneracies in 
addition to those that result from spatial symmetry. The full symmetry group to 
be considered is the grey space group G |  O) where 0 is the time reversal 
operator,  which in this spin-free case is the complex conjugation operator  
[5, 13, 14]. Following the discussion of Bradley and Cracknell [14] these extra 
degeneracies are obtained by forming the corepresentations of the grey space 
group M =  G +  OG. In analogy to the simple space group, these corepresenta- 
tions can be obtained by induction from the small representations of the little 
group of M, kK m. The space group D~h contains the inversion operator  and 
because the effect of {/f f}  on a Bloch function ~It k gives qt_k, k and - k  will 
always be in the same star and the spectra of eigenvalues for k and - k  will be 
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Table $. Lattice harmonics for the graphite lattice 

C. P. Mallett 

Symmetry 
point Representation l m l m Harmonics 

r A~+,A~_ xl(c 1 @ 
m mod (+6) A~+, A~_ xl(s I @ 

A~+, A~_ xt(s 1 @ 
A'~+, A~_ Xl( q @ 

t p E+,E_  row 1 x l (q  @ 
yl(Cl @ 

row 2 

E+, E" row 1 

row 2 

M M~, ~'_ 
m mod (+2) N~_, NL 

~/+, A" 
~ ,  ~"  

K A'~,A~ 
m mod (6) 

A~, A~ 

E'  row 1 

row 2 

E" row 1 

row 2 

A A~ 2) row 1 
m mod (+6) 

row 2 

A(2 2) row 1 

row 2 

E (~) row 1 

0 0 3 3 g2)+x3(c3@~4) 
3 3 6 6 s2) +x3(s3 @s4) 
4 3 7 6 s2)+x3(s3 @'s4) 
] 0 4 3 C2)+X3(C 3 @ C4) 
1 1 4 4" C2) + X3(C3 @ e4) 
2 2 5 5 c2) + y3(c3 @ C4) 
1 1 4 4 xl(sl @ g2)+x3(s3 @g4) 
2 2 5 5 yl{-(Sa@g2)}+y3{-(sa@g4)} 
2 1 5 4 xl(cl @ C2)+X3(C3 @ ~'4) 
3 2 6 5 Yl(q C) c2)+y3(c3 (~) ~'4) 
2 1 5 4 xl(s1@'J2)+x3(s3@g4) 
3 2 6 5 yl{-(sl @ s2)}+y3{-(s3 @ s4) } 

0 0 1 1 Xl(Cl @ C2)+X3(C3 @ C4) 
1 1 2 2 xl(sl @ s2)+Xz(Sz @ h )  
2 1 3 2 xl(sl ( ~  S'2) + X3(S3 (~) h)  
1 0 2 1 xl(q@g2)+x3(c3(~)c4) 

0 0 3 3 xa{ml+@(-rfi2)}+ 
2 2 5 5 x3{m3+@(-ffh)} 
1 0 4 3 xl{ml+@(-fft2)}+ 
3 2 6 5 x3{m3q-@(--m4)} 
1 1 4 4 xl{ml::F(--ffl2)}+ 
2 2 5 5 yl{rnl+(-r~2)}+ 
0 0 3 3 x3{m 3 + (-- ~14)} + 
1 1 4 4 y3{m3~(-m4)} 
1 1 4 4 xl[-i{m,+(-m2)}]+ 
2 2 5 5 yl[i{ml+(-rfi2)}]+ 
0 0 3 3 x3[-i{m3q:(-fft4)}]+ 
1 1 4 4 y3[i{m3+(-ffI4)}] 
2 1 5 4 xl{ml~(-rh2)}+ 
3 2 6 5 yl{ml+(-ff~2)}+ 
1 0 4 3 x3{rna+(-fft4)}+ 
2 1 5 4 y3{maZF(-ffl4)} 
2 1 5 4 Xl[-i{ml+(-rfi2)}]+ 
3 2 6 5 y![i{ml~z(-rh2)}]+ 
1 0 4 3 xa[-i{ma:~(-ff%)}]+ 
2 1 5 4 Ya[i{m3+(-n54)}] 

0 0 3 3 XlCl+X4g4+ 
1 0 4 3 x2g 2+x ac a 
0 0 3 3 x2(-ic2)+x3(-ic3)+ 
1 0 4 3 Xl(--iCl)+Xa(--ic4) 
3 3 6 6 XlSl+X4g4+ 
4 3 7 6 X2S2+XaN3 
3 3 6 6 x2(-ig2)+Xa(-is 3)+ 
4 3 7 6 Xl(-isl)+x4(-is4) 
1 1 4 4 Xlq+X4g4+ 
2 2 5 5 ylcl+y4c4 + 
2 1 5 4 X2C2+X3C3+ 

3 2 6 5 y26"2+yaCa 
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Table 5 (continued) 

287 

Symmetry  
point  Representa t ion  l m l m Harmonics  

A (cont.) 
m rood (+6) 

L 
m rood (+2) 

E(4) 

E 1 

E 2 

H A (2) 

m mod (6) 

Symmetry  
line 

E 

E* 

row 2 1 1 4 4 xlsl+x4g4+ 

2 2 5 5 y l ( -S l )+Y4( -~4)+  
2 1 5 4 X2S2+X3S3+ 
3 2 6 5 y2(-s2) + y3(-s3) 

row 3 1 1 4 4 x2(-g2)+x3(-c3)+ 
2 2 5 5 Y2(-e2) + Y3(-c3) + 
2 1 5 4 x l ( - c t )+Xg( -g4)+  
3 2 6 5 y l ( -C l )+y4( -~4)  

row 4 1 1 4 4 x2(-ga)+X3(-s3)+ 
2 2 5 5 yzg2+y3s3+ 
2 1 5 4 x~( -s l )+x4(-g4)+ 
3 2 6 5 y~s l+y494 

row 1 0 0 1 1 xlc l+x4~4+ 

1 0 2 1 X2C2+X3C 3 
row 2 0 0 1 1 x2(-i~,2)+x3(-ic3)+ 

1 0 2 1 Xl(- ic l )+x4(- i~4)  
row 1 1 1 2 2 x~sl+x4g4+ 

2 1 3 2 xzg2+x3s 3 
row 2 1 1 2 2 x2(-ig2)+x3(-is3)+ 

2 1 3 2 x j ( - i s l )+xa(- iga)  

row 1 0 0 3 3 x l m l +  

1 0 4 3 x2{i(-ff~2)}+ 
3 2 6 5 x3m3+ 
2 2 5 5 x4{i(-ff~4)} 

row 2 0 0 3 3 xz{-i(-r f iz)}+ 
1 0 4 3 x l m  I + 

3 2 6 5 x4{-i(-ff t4)}+ 
2 2 5 5 x3m 3 

row 1 1 1 4 4 xlm~+ 
3 2 6 5 x2{-i(-ff t2)}+ 
1 0 4 3 x3m3+ 
1 1 4 4 x4{-i(-r~4) } 

row 2 1 1 4 4 x2{i(-rh2)}+ 
3 2 6 5 x l m l +  

1 0 4 3 x4{i(--~ ' /4)}+ 
1 1 4 4 x3m 3 

row 1 2 1 5 4 xlm~+ 
2 2 5 5 x2{i(-rhz)} 
0 0 3 3 x3m 3 
2 1 5 4 x4{i(-r~4) } 

row 2 2 1 5 4 xz{(- i (-r~2)}+ 
2 2 5 5 xama+ 
0 0 3 3 x4{-i(-ff t4)}+ 
2 1 5 4 x3m 3 

A Alp, Aa, ,, 0 0 3 3 xl(cl  (~) q~52)+x3(c3 (~) q'c4)  + 
m m o d ( + 6 )  1 0 4 3 Yl(cl@qc2)+Y3(C3 @ q ' c 4 )  
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Table 5 (continued) 

Symmetry 
line Representation l m l m Harmonics 

A (cont.) A2p , A2m 3 3 6 6 
m m o d ( + 6 )  4 3 7 6 

Ep, E~ row 1 1 1 4 4 
2 2 5 5 
2 1 5 4 
3 2 6 5 

Ep, E,, row 2 1 1 4 4 
2 2 5 5 
2 1 5 4 
3 2 6 5 

U ..~e,.N,,, 0 1 1 1 
m mod (+2) 1 o 2 1 

~p, ~ 1 1 2 2 
2 1 3 2 

P Ap, Am 0 0 3 3 
mmod(6 )  1 0 4 3 

2 2 5 5 
3 2 6 5 

E row 1 1 1 4 4 
2 1 5 4 
2 2 5 5 
3 2 6 5 
0 0 3 3 
1 0 4 3 
1 1 4 4 
2 1 5 4 

row 2 1 1 4 4 
2 1 5 4 
2 2 5 5 
3 2 6 5 
0 0 3 3 
1 0 4 3 
1 1 4 4 
2 1 5 4 

E ,;4' 0 0 1 1 
m rood(+2) ~3' 1 1 2 2 

~/" 2 1 3 2 
~ "  l 0 2 1 

T s r  0 0 3 3 
mmod(6 )  l 1 4 4 

2 2 5 5 
~ ' ,  ~ "  1 0 4 3 

2 1 5 4 
3 2 6 5 

T'  .~r ~ '  0 0 1 1 
m mod(2) s r  1 0 2 1 

XI(S 1 (~) q'S2)+X3(S3 @ q's4) + 
yl(S1 @ qs2) + y3(S3 @ q's4) 

Wl(Cl @ qc2)+ W3(C 3 (~ q ' G ) +  
Xl(C 1 (~) qc2)+x3(c 3 @ q*e4)+ 
y~(c~ | +y3(c3 |  
ZI(C 1 @ qc2) + Z3(C 3 @ q*c4) 
wl(sl @ qg2) + w3(s3 @ q*s4) + 
xl{-(sl @ qga)}+ x3{-(s3 @ q*ge)}+ 
yI(SI @ qs2) + y3(S3 @ q*se) + 
z~{-(sl @ qg2)} + z3{-(s3 @ q'h)} 

gl(c I (~ qc.2)+ x3(c3 @ q*ee)+ 
Yl(Cl (~) qcz) + y3(c3 @ q*g'4) + 
Xl($1 @ qg2)+X3(S3 @ q ' s4)+  
yl(Sl C) qS2) + y3(S3 @ q'S4) 

xl{rn1• 
yt{ml •  + 

wl{ma ~q(-ri2)}+ 
xl{ml • 
Yl{rnl • q ( -  ri2)} + 
zl{rnl:~ q(-ri2)} + 

xdm~ • | q*(--me)}+ 
y3{m3 • @q* ( -  ri4)} 

w3{m3 • q*(-ri4)} + 
x3{rrt 3 ::F q*(-- ri4)} + 
y3{m3 ::g q*(-- ria)} + 
z3{m3 • q*(-- ri4)} 

wl[- ilm 15: q (-  ri2)}] + 
x ~[- i{m 1 q: q (- ri2)}] + 
Yl[i{m~ w q(-ri2)}] + 
zl[i{ml • q(-r i2)}]+ 

X1C 1 + X2C 2 + X3C 3 + X4C e 
XISI+X2S2+X3S3 +X4S 4 
XIS 1 + X2S" 2 + X3S 3 + X4S 4 
XlC 1 + X2C 2 + X3C 3 + X4C 4 

w3[-i(m 3 q: q*(- ffl4)}] + 
x3[- i{m3 • q*(-  ri4)}] + 
y3[i{m3 5: q*(-  ri4)}] + 
z3[i{rn 3 q: q*(-  rile)}] 

Xl[{ml + (~)(-ri2)}] +x3[{m3• 
yl[{ml T C) 09'(- ri2)}] + y3[{m3 q: (~)aw*(- ria)}] 
Zl[{m 15: C)~o(-ri2)}] + zs[{m 3 5: (~)ao)(-ri4)}] 
xl[{mx + @(-ri2)}] +xs[{m35:@a(-ff~4)}] 
ya[{mi ~: @~0"(-ri2)}] + y3[{m3 T @ a~o*(- ri,)}] 
zl[{ml • @~(-rig}] + z3[{m3 �9 | 

xl[{mx• | +xd{m~ �9 @(-riA}] 
xl[{ml• @(-ri2)}] +x3[{m3:~Q(-riA}] 
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Symmetry  
line Representa t ion  l m l m Harmonics  

R 
rn rood (+2) 

S 
m rood (6) 

S t 

m rood (2) 

Symmetry  
plane 

V1 
m rood (2) 

v~ 
m mod (2) 

v~ 
m mod  (+2) 

s/"  

A l 

A" 

A '  

A"  

st/ 

0 0 1 1 XlCl+X4g4+ 
1 0 2 1 X2C2+X3C3 
1 1 2 2 x l s~+x j4+ 
2 1 3 2 x2g2+x3s 3 
2 1 3 2 xlsl+x4g4+ 
1 1 2 2 xzg 2+x3s 3 
1 0 2 1 x x q + x 4 G +  
0 0 1 1 x2~2+x3s3 

row 1 0 0 3 3 X t m l +  
1 0 4 3 x2{i(-r~2)}+ 
1 0 4 3 x3rn3+ 
0 0 3 3 x4{ia(-fft4)}+ 
1 1 4 4 y l rna+ 
2 1 5 4 y2{ioJ*(-fft2)}+ 
2 1 5 4 y3rn3+ 
1 1 4 4 y4{ko*a(-rfi4)}+ 
2 2 5 5 zlrnx+ 
3 2 6 5 zz{ko(-~2)}+ 
3 2 6 5 z3m3+ 
2 2 5 5 z4{i~ (-- ~'[4)} + 

row 2 0 0 3 3 Xz{-i(-rg2)}+ 
1 0 4 3 x lml+ 
1 0 4 3 x4{-ia(-rg4)}+ 
0 0 3 3 x3m3+ 
1 1 4 4 y2{-ko*(-fft2)}+ 
2 1 5 4 y ~ m l +  
2 1 5 4 y4{-ioJ*a(-rfi4)}+ 
1 1 4 4 y3rrt3 + 
2 2 5 5 z2{-iwa(-rfi2)}+ 
3 2 6 5 z lml+ 
3 2 6 5 Za{--iKo(--F~14)}+ 
2 2 5 5 z3rn 3 

row 1 0 0 1 1 x lml+x4{i ( - f f l4 )}+  
1 0 2 1 x2{i(-fft2)}+x3rn3 

row 2 0 0 1 1 x2{-i(-ff'L2)}+x3m3~ 
1 0 2 1 Xlgnl+x4{--i(--ff/4) } 

0 0 1 1 Xlml+x2ff ' t2+x3m3+x4ff l4 
1 0 2 1 xltnl+x2ffl2+x3rrl3+x4ff'14 

0 0 1 1 Xlml+x41fl4 
1 0 2 1 X2/~'/2+X3FFI3 
1 0 2 1 Xlml+X4t, n4 
0 0 1 1 X2?~12+x3m3 

0 0 1 0 X1CI+X2C2+X3C3+X4C4 
1 1 2 1 X1CI+X2C2+X3C3+X4C4 
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V 3 (cont.) 
m mod (+2) 

Va A o 
m mod (2) Am 

v5 ~r 
m mod (6) 

General  point 
m rood (2) 

1 1 2 l XlSl+X2S2+X3S3+X4S4 
2 2 3 2 Xl$1+X2S2+X353+X4S4 

0 0 1 0 xl{ml+q(-rfi2)}+x3{m3+q*(-rfi4) } 
1 1 2 1 Xl{rnl+q(-lfi2)}+xa{m3+q*(-rh4) } 

0 0 1 0 Ul{rn 1 @ q ( - r ~ 2 )  } +u3{m 3 @ q * a ( - m 4 )  } 
3 3 4 3 vi{ml@q(--ff*2) } +v3{m3@q*a(-rh,,) } 
1 1 2 1 w,{rnl @oJ*q(--rh2)} +wa{ma @ t o * q * a ( - ~ 4 ) }  
4 4 5 4 xl{m, @ o~*q(--rh2)}+xa{m3@ ~o*q*a(--~4)} 
2 2 3 2 y~{m 1 (~) toq(--fft2)} +ya{m 3 @ oJq*a(-r~4) } 
5 5 6 5 zl{ml@oaq(-fft2)} +za{m3@oJq*a(-r~4) } 

0 0 1 0 kl{ml+(-t~2)}+k3{m3+(-?'~4) } 
0 0 1 0 inl{ml-(-f f t2)}+in3{m3-(-~, ,)  } 
1 1 2 1 pl{ml-(-ff't2)}+p3{m3-(-rfi4)} 
1 1 2 1 irl{ml+(-ffta)}+ir3{m3+(-rh4) } 

Explanatory Notes for Table 5 

(i) The values of l and m to be used with the harmonics are given in column three of the table. The 
l value is given rood (+2) except for K, H, P, T, S and V 5 when the values are rood (2 ) -  i.e. any 
multiple of 2 can be added to or subtracted from that listed. The accompanying values of m are 
given in an analogous fashion, either as rood (+s) or rood (s), and are listed in column one under 
the k point label. The permitted values of l and m are obtained by forming a succession of values 
using the modulo conditions. Thus, for K, with l mod (2) and m rood (6) the allowed 1 and m 
values for A~ are 

(1, 0)(3, 0)(4, 3)(4, -3)(5,  0)(6, 3)(6, -3)(7,  0)(7, 6)(7, - 6 )  etc. 

for cells 1 and 2 and 

(2, -1)(3,  2)(4, -1)(5,  2)(5, -4)(6,  -1)(6,  5)(7, 2)(7, -4)(8,  -1)(8,  5)(8, - 7 )  etc. 

for cells 3 and 4. 

(ii) The notation for the spherical harmonics (see Appendix) is m = Y'~(O, dO), ( -m)  = YTm(O, 4~), 
c = Y~'C(0, qS), s = Y~"(O, 4)). Subscripts refer to the atom about which, a spherical harmonic is 
centred and bars for atoms 2 and 4 indicate that the axes for these centres are inverted with 
respect to those for 1 and 3. 

(iii) There are two different sets of • signs in the table - the signs with the circumscribing circle, @ 
and @, are used for k points where two different representations are listed in column 2 and the 
upper sign refers to the first representation listed and the lower sign the second. The other signs, • 
and :~ without the circle, refer to the m v a l u e - t h e  upper sign is to be taken for the first m value of 
the two listed on a particular line, and the lower sign the second. 

(iv) The expansions can be obtained by associating, for a particular representation of a k point, the 
permitted values of l and m (see (i)) with the functions listed under harmonics. The resulting four 
centre expansions can be used with Bloch periodicity to form the multicentred lattice harmonics. 
For degenerate representations the basis is to be understood as a row vector, whose transformation 
properties are obtained by postmultiplication with the appropriate matrix representative from 
Table 3. 

(v) The following coefficients are used: vn, v~, w i, x i, Yl, z~ (i = 1, 2, 3, 4) arbitrary complex coeffi- 
cients (such as a product of a cellular coefficient and a radial function), ki, ni, p~, r~ (i = 1, 2, 3) 
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arbitrary real coefficients. 

i =.fZ-f  

q = exp (crib) q* = exp ( -  zri3,) 

a = exp (4wia) 

o~ = exp (-2wi/3) 

(vi) Examples: the following are suitable cellular expansions: 

a) FE'_' second row: 

1B21R2(l){y1.s(1 ) - y~,s(~)} +2B2~R2(3){y&,s(3)_ y~,s(~.)} + 

~Ba2R3(1)[~{y2,s(1 ) _ y2,,(~)}] + 2B3~R3(3)[_{y2,~(3 ) _ y2,~(F~)}] + 

~B4~R4(1){y1,~(1 ) _ y4~,~(~)} + 2B4~R4(3){y~,~(3 ) _ yl,~(~)} + 

~BszRs(1)[_{y2.~(1 ) _ y5~,~(~)} + 2Bs2Rs(3)[_{y~f~(3 )_  y2,~(~)}] + 

~B54Rs(1){y4,~(1)_ y4.~(~)} +2Bs4Rs(3){y4,~(3 ) - y~,s(~)} + 

1B61R6(1){xlzI,s(1)_ y l , s ( ~ ) }  +2B6~R6(3){y~,s(3)_ y~,s(~)} + 

[3' = T3 component of the k vector] 

[2a = T 2 component of the k vector] 

w* = exp (2~ri/3). 

,B65R6(1)[_{ys,~(1)_ y5,s(~)} +2B65R6(3)[_{y~,s(3)_ y65,s(~)}]+.... 

The form for the expansions for other IRs of F, M, A and U is similar. 

b) KA~ - see Eqs. (52) and (53). The form of the expansion for P, T, T', V 4 and V s is similar. For 
a general point the expansion coefficients are real. 

c) for AA(~ ) first row: 

1BooRo(1) Y~ +2BloR1(2)Y~l(2 ) +3B1oRl(3)Y~1(3) + 4BooRo(F4) Y~(4) + 

1B2oRo(1) yo(1) + 2B3oR3(2 ) yo(~) + 3B3oR3(3) yo(3 ) +4B2oR2(~) yo(~) + 

1 3 , c  2 - 3 c - B33R3(1) Y3 (1) + B43R4(2 ) Y4' (2) + 3B43R4(3 ) Y3'C(3) + 4B33R3(F4 ) y3,c(F~) + 

'B40Ra(1)Y~ +2BsoRs(2)Y~ +3BsoRs(3)Y~5(3 ) +4B4on4(4)Y~4(4 ) -b 

~B53Rs(1) y3,c(1 ) + 2B63R6(~) y~,c(~) + 3B63R6(3) y3,c(3 ) + 4B63R6(7~ ) y3,c(~) + 

~B6oR6(1)Y~ +ZBToRT(2)Y~7(5) +3B7oRT(3)Y~7(3) +4B60R6(4)Y~6(74) + 

I B66R6(1) y6,~(1 ) + 2B76R7(~) y76,~(~) + 3Bv6R7(3) y76,c(3) + 4B66R6(~) y6,~(~) + .  , . .  

The expansions for L and R are similar. 

d) HA (2) first row: 

1BooRo(1)Y~ + 2BloRl(2) Y~(2 ) +3B2_lR2(3)Y~l(3)+6B11Rl(4)Yl(F1) + 

1B2oR2(1)Y~ + 2B3oR3(2) Y~3(2) +3B32R3(3)y2(3) +4B2_2R2(F~)Y~2(4)+ 

IB3_3Ra(1)y33(1)+2B4_3R,(2)Y43(2)+3B4_lR4(3)Y41(3)+4B3aRa(F~)y1(4 ) + 

1B33R3(1)y3(1) +2B43R4(2)y3(2) +3Bs2Rs(3)y2(3 ) +*B4_2R4(4)Y42(4)+ 

~B4oR4(1)Y~ +2BsoRs(2)Y~5(2 ) +3Bs_4Rs(3)Y~(3) +4B44R4(4)Y~(4) + 

1B 5 3Rs(1)y53(1)+2B6_3R6(2)y63(2)+3B6_aR6(3)Y61(3)+4BsIRs(F~)y15(74) + 

~B53Rs(1)y3(1) +2B63R6(2)Y~(2) +3B6~R6(3)Y~(3) + 4 B s _ s R s ( 4 ) Y 5 5 ( 4 ) + . . . .  
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e) Y,~" 

1821R2(1) y2~,s(1) + 2B21R2(~) y2~,s(ff,) + 3B21R2(3) y2~,s(3) + 4821R2(~) y~,s(~) + 

1B32R3(1) Y~'~(1) + 2B32R3(2) y32'~(2) + aB32R3(3 ) Y2'~(3) + 4B32R3(4 ) y32'~(7~) + 

1B41R,~(1 ) Y4~'~(1) + 2B4~R4(2 ) Y~'~(2) + 3B41R4(3) Y4X'~(3) + 4B4~R4(4 ) Y4~'~(7~) + 

~B43R4(1) y3,~(1 ) + 2B43 R4(~) y3,~(~) + 3B43R4(3) y3,~(3 ) + 4B43 R4(7~ ) y3,~(7~) + . . . .  

The expansions for V 3 have a similar form. 

the same. In this case the magnetic little group kK m will have one of the 
following forms: 

kK ~ = k g  + O~K (55) 

k K m =  kK+ A k K  (56) 

where A is the product  of 0 and some space group operation other than a 
translation. Whether  the antiunitary element A introduces extra degeneracy 
depends on whether the components of the basis of M, <~'IeA<Vl (<4'1 is a 
row vector of Bloch functions) are linearly independent and this in turn 
depends on the relationship between the corresponding components of the 

rrt i ^ corepresentations of kK , kK  and ~kK(A-1RA)]  *, for an element R of G. 
First, the magnetic little group is expanded in left cosets with respect to T (cf. 
Eq. (8)). 

, K  ~ = ~ { p l w } T +  Y~ O{q I x}T (57) 
{p Iw} {q Ix} 

where the sum over the {p I w} and {q Ix} includes elements obeying 

pk = k + g (58) 

qk = - k + g  

and g is a reciprocal lattice vector. The relationship between the two compo- 
nents of the corepresentation can then be established using the Frobenius-  
Schur test, 

Y~ x(lq I x}2 I~g)  = c l~gl (59) 
{q I x }  

in which x({q I x}21 s is the character of {q Ix} 2 in the i th IR  of kK, I~:l the 
order  of the little factor group (cf. Eq. (8)) and c has the values 1, - 1  or zero. 
Extra degeneracies occur if c = 0 or - 1 .  To find the {q [ x} required in the test 
(59) the form of the magnetic little group is required. If the form is given by 
(55) then from Eqn. (58) for {q Ix}, it is the elements of kK that transform k 
into - k ,  and thus the two vectors are equ iva len t - th i s  is the case if k is either 
zero or half a reciprocal lattice vector (points F, A and M of the BZ). If the 
magnetic little group has the form (56) then k and - k  appear in the same star 
but are not equivalent and the elements {q Ix} in (57) will be the elements of 
the set {I] f}k~,  where k,Yg~is the little co-group, the isomorph of the little 
factor group containing the elements {p ]w} in (8). (cf. the definition of kq~, Eq. 



Lattice Harmonics for Graphite 293 

(13)). When the sums are carried out for F, A and M using (55), (57) and (58) 
and for all other points using (56), (57) and (58) it is found that degeneracies 
are only introduced for the line R and the symmetry plane V2, when c in Eq. 
(59) is zero and kK ~ has the form (56) with A = 0{11 f}. For these k points the 
representations ~,/({p ] 0} and [~,/((0{I I f}{p ] 0}{I1 ~0)]* are inequivalent and 
the corresponding bases (~rk] and O{I] f} (qlkl are mutually orthogonal. In this 
case  K(o{Ilf}{plo}{II/}o)]* must be equivalent to some other IR of kK 
and the extra degeneracy is thus between two sets of eigenvalues belonging to 
different IRs. The representation sr of R will be equivalent with one in which 
the characters for {E ]0}, {C~110}{O- h 10} and {Ova [0} a r e  1 , - 1 , - 1  and 1 
respectively - that is N" (remember that {I I f}{o- h [ 0}{I I f} = {oh I 0}{E [t3} and 
that x({E] t3} [ ~/~) -- -1 ) .  Similarly the representations sO" and N'  are degener- 
ate as are the representations A' and A" for V2. In each case the bases of each 
row are related to each other by A = 0{I] f}. This result is the same as that 
obtained by examining the reality of the representations of G[13, 14], though 
with the method described above it is easier to find the bases of the representa- 
tions that stick together. 

Time reversal symmetry can also be used to simplify the cellular expansion for 
a general k point, because in this case both {I] f}~It k and 0qtk, which give a 
result proportional to V_k, are identical because each Bloch function ~ 
appears only once in the basis of G, and so, therefore, must aI& k. With Eq. (30) 
for aIt~, the result 

{I I f}'I'~ = 0~'k (60) 

becomes 

1C, mR,(2)Y~"(2)~(2 ) + ~ 2 C,~R,(1)Y~(1)8 (1) 
lm /m 

"t- 2 3 G,,R I (~) Y~t (4)8 (4) + ~ 4 GmRt (3) Y~'(3) 8 (3) 
Inz /m 

= 2 1C '~zmRI(1 ) (Y?(1 ) )*8 (1 )  + 2 2C~mRI(2)(YV~(2))gS(2)  
lna lm 

+ ~ 3C*t,.R~(3)(Y'~(3))*6(3) + ~ 4GmR,(4-)(Y'~(g))*8(4) (61) 
[m. lm 

so, equating coefficients and using the Condon and Shortley convention for the 
spherical harmonics and Eq. (54) 

i C-~_m-- 2C, .~( -  i )  m 

3t ie_  = 4 C , ~ ( _ 1 ) ~ "  (62) 

The result given in Table 5 comes from (62) by expanding the complex cellular 
coefficients in real and imaginary parts. This result is known as the coefficient 
theorem in electronic band structure calculations [2]. 
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Appendix on Conventions 

The spherical harmonics used in this work are defined in the Condon and 
Shortley convention as [24, 26] 

I (2l+l)!( l -m)! l  ln(-1)z+" (de@sO) t+" Y'~(O, 05) = ( -4--~+--m--).T J 2Zl! (sin 0)" 

x (1 - cos 2 0) z exp (ira05) (A1) 

= ( -  1) m (2"r r ) - ln~(cos  0) exp (ira05) (A2) 

where ~ ( c o s  0) is a normalised Associated Legendre function 

1(21+l)!(l-m)!l ln(-1) t / d \~+" 
~ ( c o s  O)= [ 2( /+  m)! J ~ (sin O)m~-~- -~)  (1 - c o s  2 0)' 

(A3) 

with the properties that [Ref. 26, Appendix 3] 

~ ' ( c o s  0 )=  ( - 1 ) " ~ [ " ( c o s  0) (A4) 

and so, under conjugation 

[Y~(O, 05)]* = (-1)mY~-"(0, 05). (A5) 

For inversion 

IY'r(O, 05) = Y?(~ - -  0, 05 + 7r) = (-1) tY?(0,  05). (A6) 

In order to use the projection operator (32), it is evident from Eqs. (39) and 
(47) that it is necessary to obtain the effect of a point operation on the 
spherical harmonics (A1). This can be done by specifying a pure rotation R by 
its Euler angles, a, /3 and T -  the convention of Bradley and Cracknell [14] is 
adopted here. All rotation operations are carried out actively (i.e. the axes are 
kept fixed and the points of space are rotated) about  space fixed axes and are 
positive in an anticlockwise direction. The full rotation is decomposed into a 
rotation of a (0 ~< a < 2-r r) about  the space-fixed z-axis, a rotation of/3(0 ~</3 < 
~') about  the space fixed y-axis and finally a rotation of 3'(0 ~< 3' <27r) about 
the z-axis. The Euler angles for the rotations of D6h (the isogonal point group 
of D4h) a r e  given in Table 6. With these conventions the spherical harmonics 
transform under rotations according to 

l 

R(a,/3, 3')Y?(0, 05)= ~ V'~(O, 05)~t{R(a,/3, 3')}n". (A7) 
r t = - - I  

For dihedral groups such as D6h the operations have /3 angles of 0 or ~- 
[14, 27] and the ro ta t ion  matrices then have the form 

~l{R(a, O, 3')}~" = exp (-ima) exp (-irn3')~,.m (A8) 

and 

~ t{R(a ,  ~-, 3")},,. = exp (-ima) exp (imT)(-1)t+'6,,_,.. (A9) 
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Table 6. Euler angles 

Proper Improper  
operation R operation S a 13 3' 

E I 0 0 0 
C~- S 6 27r/3 0 0 
C~ S~- 4w/3 0 0 
C~1 ~al ~r ~r 0 
C~2 o'a2 5w/3 ~r 0 
C~3 o-a3 ~r/3 ~r 0 
C2 % rr 0 0 
C 6 S; 5rr/3 0 0 
C~- S 7 vr/3 0 0 
C'~1 G1 0 rr 0 
C~2 ~ :  27r/3 ~r 0 
C~3 O'v3 4w/3 w 0 

Explanatory Note for Table 6 

(i) The rotations are about the axes in Fig. 2. 

For an improper rotation S, written as I R ,  the effect on the spherical harmonics 
can be obtained from (A7) and (A6). The following definitions are used in 
Table 5: 

1=_ ( y ~ +  yTm) = ~ (_ 1)m (2~r)_X/2{~Feim, + ~7,~e_im4, } 
,/2 

= ~ (-1)m (2w)-l/2@7'{e~=* + ( -  1)"*e -~m* } 

= ~  (-1)m (2w)-1/2~2 cos m& = y~,c m even 

=~-~ ( -1)m(2w)-*/2~2i  sin rnq~ = i Y F  '~ m odd (A10) 

1 
`/2 (YI"-  Y7 m) = iY~ '*  m even 

= y,~,c m odd. ( A l l )  

This spherical harmonic convention, the Condon and Shortley one, differs from 
that adopted by Altmann, Bradley and Cracknell [10, 11] as follows [24, 28] 

Y ' ~ ( A B C )  = Y ' ~ ( C S )  m <~ 0 

= ( - 1 ) ' ~ Y ' p ( C S )  m > 0. (A12) 

To convert the tables of Refs. [10] and [11] into spherical harmonics in the 
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Condon and Shortley convention, then 

Y'F 'C(ABC)=-~{Y 'F(ABC)+ Y~m(ABC)}= Y'F'c(CS) m > 0  m even 

= iY'F's(CS) m > 0 m odd 

Y'F'S(ABC)=-~2 {Y 'F(ABC ) -  Y f " ( A B C ) } =  Y~'~(CS) m > 0  m even 

= iY'~'c(CS) m > 0 m odd. 

These changes should be made  for all IRs in the cubic harmonics [10] and for 
the IRs  of F, M, A, L, A, U, E, T, T' ,  and R of the hexagonal close packed 
lattice harmonics [11]. 

Of the complex lattice harmonics for the h.c.p, lattice, only those for K and P 
need to be amended,  since for H, S and S '  the phase factor in (A7) can be 
absorbed in the cellular coefficient. For K and P the changes are 

1 Y'F(ABC)+ Y T " ( A B C ) } = - ~  {Y~F(CS)• ~'}-"(CS)} m even 
42 

- 1  
= { Y ? ( C S ) : F  m o d d  

where the notation of Al tmann and Bradley [11] has been used. The following 
minor misprints in the h.c.p, harmonics should be  noted in addition to those 
listed by Al tmann [2]: 

(a) Interchange the subscript labels 1 and 2 on the vectors Ta and T2 of the 
reciprocal lattice. 

(b) For the character table of H in Table 1 for the class of elements 
{C2lta +to}@{C312tl +to} for representat ions E and E* change the - 1  to 
+1. The  classes in H containing x with zero characters are {C~ I x,, "r, + to}, 
not {C;, I't,'tr+tO}. 

(C) In Table I I  the matrix representatives for Oar and C~ (r = 1, 2, 3) for the 
representat ion KE" should be interchanged. 

(d) In Table IV the lattice harmonics for T '  should read c • ~ and s :~ g, not 
c •  oT sq=~. 
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